(Hydridae) Семейство Гидровые, Family Hydridae


Жизнь животных. Том 1. Беспозвоночные  Под редакцией профессора Л.А.Зенкевича 1968 г.

ПРЕСНОВОДНАЯ ГИДРА
         В каждой группе животного царства имеются излюбленные зоологами представители, которых они используют в качестве основных объектов при описании развития и строения животных и над которыми ставят многочисленные опыты по физиологии. В типе кишечнополостных таким классическим объектом служит гидра. Это и понятно. Гидр легко найти в природе и сравнительно просто содержать в лабораторных условиях. Они быстро размножаются, и потому в короткий срок можно получить массовый материал. Гидра — типичный представитель кишечнополостных животных, стоящих у основания эволюционного древа многоклеточных. Поэтому ее используют при выяснении всех вопросов, касающихся изучения анатомии, рефлексов и поведения низших многоклеточных. Это в свою очередь помогает понять происхождение более высокоорганизованных животных и эволюцию их физиологических процессов. Кроме того, гидра служит прекрасным объектом при разработке таких общебиологических проблем, как регенерация, бесполое размножение, пищеварение, осевой физиологический градиент и многое другое. Все это делает ее незаменимым животным как для учебного процесса — от средней школы до старших курсов университета, так и в научной лаборатории, где решаются проблемы современной биологии и медицины в разных их отраслях.
         Первым человеком, который увидел гидру, был изобретатель микроскопа и крупнейший натуралист XVII—XVIII вв. Антон Левенгук.
         Разглядывая водные растения, Левенгук увидел среди других мелких организмов странное животное с многочисленными «рогами». Он наблюдал также рост почек на его теле, образование у них щупалец и отделение молодого животного от материнского организма. Левенгук изобразил гидру с двумя почками, а также нарисовал кончик ее щупальца со стрекательными капсулами, каким он видел его под своим микроскопом.
         Однако находка Левенгука почти не привлекла внимания его современников. Лишь через 40 лет гидрой заинтересовались в связи с необычайным открытием молодого учителя Трамбле (Trambley). Занимаясь в свободное время изучением малоизвестных тогда водных животных, Трамбле обнаружил существо, похожее и на животное и на растение. Чтобы установить его природу, Трамбле разрезал это существо пополам. Регенеративные способности низших животных тогда были еще почти неизвестны и считалось, что восстанавливать утраченные части могут только растения. К удивлению Трамбле, из каждой половинки выросла целая гидра, обе они шевелились, хватали добычу, значит, это было не растение. Возможность превращения куска тела гидры в целое животное была воспринята как значительное открытие в науке о жизни, и Трамбле занялся глубоким и серьезным изучением гидры. В 1744 г. он опубликовал книгу «Мемуары к истории одного рода пресноводных полипов с руками в виде рогов». В книге было очень подробно изложено строение гидры, ее поведение (движения, ловля добычи), размножение почкованием, некоторые моменты физиологии. Для проверки своих предположений Трамбле проделал с гидрой ряд опытов, положив начало новой науке — экспериментальной зоологии.
         Несмотря на несовершенство тогдашней оптики и слабое развитие зоологии, книга Трамбле написана на таком высоком научном уровне, что не потеряла своего значения до настоящего времени, а рисунки из этой книги можно найти во многих учебниках по зоологии.
         Сейчас научная литература о гидре счисляется многими сотнями статей и книг, но тем не менее гидра и по сей день занимает умы исследователей. Маленькое примитивное животное служит для них пробным камнем, на котором решаются многие вопросы современной науки о жизни.
        
         Если собрать в прибрежной части озера или реки водные растения и поместить их в аквариум с чистой водой, то вскоре на них можно увидеть гидр. Вначале они почти незаметны. Потревоженные животные сильно сжимаются, их щупальца сокращаются. Но по истечении некоторого времени тело гидры начинает вытягиваться, ее щупальца удлиняются. Теперь гидру можно как следует разглядеть. Форма ее тела трубковидная, на переднем конце находится ротовое отверстие, окруженное венчиком из 5—12 щупалец. Сразу под щупальцами у гидр большинства видов имеется небольшое сужение — шейка, отделяющая «голову» от туловища. Задний конец гидры сужен в более или менее длинную ножку, или стебелек, с подошвой на конце (у некоторых видов ножка не выражена). Посередине подошвы находится отверстие, так называемая аборальная пора. Гастральная полость гидры сплошная, перегородок в ней нет, щупальца полые, похожие на пальцы перчатки.
         Стенка тела гидры, как и у всех кишечнополостных, состоит из двух слоев клеток, их тонкое строение уже было описано выше, и потому здесь мы остановимся только на одной особенности клеток тела гидры, которая полностью изучена пока лишь на этом объекте и не обнаружена у других кишечнополостных.
         Структура эктодермы (и энтодермы) в разных частях тела гидры неравнозначна. Так, на головном конце клетки эктодермы мельче, чем на туловище, здесь меньше стрекательных и промежуточных клеток, но резкой границы между покровами «головы» и туловища провести нельзя, так как изменение эктодермы от туловища к «голове» происходит очень постепенно. Эктодерма подошвы гидры состоит из крупных железистых клеток, в месте перехода подошвы в стебелек железистый характер покровных клеток постепенно утрачивается. То же самое можно сказать и о клетках энтодермы, Пищеварительные процессы происходят в средней части тела гидры, здесь ее энтодерма имеет большое количество пищеварительных железистых клеток, а эпителиально-мускульные клетки энтодермы срединной части туловища образуют многочисленные псевдоподии. В головном отделе гастральной полости, в стебельке и в щупальцах переваривания пищи не происходит. В этих отделах тела эктодерма имеет вид выстилающего эпителия, почти лишенного пищеварительных железистых клеток. Опять-таки резкой границы между клетками пищеварительного отдела гастральной полости, с одной стороны, и такими клетками «головы», стебелька и щупалец, с другой стороны, провести нельзя.
         Несмотря на различие в строении клеточных слоев в разных частях тела гидры, все ее клетки не находятся на строго определенных постоянных местах, а непрерывно передвигаются, причем их движение строго закономерно.
         Используя высокую способность гидры к заживлению ран, можно проделать такой интересный опыт. Берут двух гидр одинаковой величины и одну из них окрашивают какой-нибудь прижизненной краской, т. е. таким красящим веществом, которое проникает в ткани гидры, не убивая ее. Обычно для этого применяют слабый водный раствор нильблаусульфата, окрашивающий ткани гидры в синий цвет. После этого гидры подвергаются операции: каждую из них разрезают на три части в поперечном направлении. Затем к срединной части «синей» гидры приращивают головной и нижний концы неокрашенного экземпляра. Срезы быстро срастаются друг с другом, и мы получаем экспериментальную гидру с синим пояском посередине тела. Вскоре после операции можно наблюдать, как синий поясок распространяется в двух направлениях — к головному концу и стебельку. При этом по телу гидры передвигается не краска, а именно сами клетки. Слои эктодермы и энтодермы как бы «текут» из середины тела к его концам, при этом постепенно меняется характер составляющих их клеток (см. рис. 162).
         В срединной части тела гидры клетки размножаются наиболее интенсивно, и отсюда они передвигаются в двух противоположных направлениях. Таким образом, состав клеток постоянно обновляется, хотя внешне животное остается почти неизменным. Эта особенность гидры имеет очень большое значение при решении вопросов о ее регенеративных способностях и для оценки данных о длительности жизни.
         Гидра — типичное пресноводное животное, лишь в очень редких случаях гидр находили в слабо осолоненных водоемах, например в Финском заливе Балтийского моря, и в некоторых солоноватоводных озерах, если содержание солей в них не превышало 0,5%. Гидры живут в озерах, реках, ручьях, прудах и даже в канавах, если вода в них достаточно чистая и содержит большое количество растворенного кислорода. Держатся гидры обычно вблизи берегов, в неглубоких местах, так как они светолюбивы. При содержании гидр в аквариуме они всегда перебираются на его освещенную сторону.
         Гидры — малоподвижные животные, большую часть времени они сидят на одном месте, прикрепившись подошвой к веточке водного растения, камню и т. д. Излюбленная поза гидры в спокойном состоянии — висеть вниз «головой», спустив несколько расставленные щупальца.
         Прикрепляется гидра к субстрату благодаря клейким выделениям железистых клеток эктодермы подошвы, а также используя подошву в качестве присоски. Держится гидра очень прочно, зачастую ее легче разорвать, чем отделить от субстрата. Если долго наблюдать за сидящей гидрой, то можно увидеть, что ее тело все время медленно раскачивается, описывая передним концом круг. Гидра может произвольно очень быстро оставлять место, на котором она сидит. При этом, по-видимому, она раскрывает аборальную пору, находящуюся в середине подошвы, и присасывающее действие прекращается. Иногда можно наблюдать, как гидра «шагает». Вначале она пригибает тело к субстрату и укрепляется на нем при помощи щупалец, затем подтягивает задний конец и укрепляется им на новом месте. После первого «шага» делает второй и т. д., пока не остановится на новом месте.

         Таким образом гидра передвигается относительно быстро, но существует и другой, гораздо более медленный, способ передвижения — скольжение на подошве. Усилием мускулатуры подошвы гидра еле заметно передвигается с места на место. Нужно очень много времени, чтобы заметить перемещение животного. Гидры могут некоторое время плавать в толще воды. Открепившись от субстрата и широко расставив щупальца, гидра очень медленно падает на дно, она способна образовать на подошве маленький пузырек газа, который увлекает животное вверх. Тем не менее гидры редко прибегают к этим способам передвижения.
         Гидра — прожорливый хищник, она питается инфузориями, планктонными рачками, малощетинковыми червями, нападает также на мальков рыб. Гидры подстерегают свою добычу, подвесившись на какой-нибудь сучок или стебель водного растения, и, широко расставив щупальца, постоянно делают круговые поисковые движения. Как только одно из щупалец гидры коснется жертвы, к ней устремляются остальные щупальца и парализуют животное стрекательными клетками. Теперь от медлительности гидры не остается и следа, она действует быстро и «решительно». Добыча подтягивается щупальцами ко рту и быстро заглатывается. Мелких животных гидра глотает целиком. Если жертва несколько крупнее самой гидры, она также может ее заглотить. При этом рот хищницы широко раскрывается, а стенки тела сильно растягиваются. Если добыча не помещается в гастральную полость целиком, гидра заглатывает лишь один ее конец, по мере переваривания проталкивая жертву все глубже и глубже. Сытая гидра несколько съеживается, и ее щупальца сокращаются.
         В гастральной полости, где пищеварительные процессы только начинаются, реакция среды слабощелочная, а в пищеварительных вакуолях энтодермы, где пищеварение заканчивается, — слабокислая. Гидра может усваивать жиры, белки и животные углеводы (гликоген). Крахмал и целлюлоза, имеющие растительное происхождение, гидрой не усваиваются. Непереваренные остатки пищи выбрасываются через рот.
         Гидры размножаются двумя способами: вегетативным и половым. Вегетативное размножение у гидр носит характер почкования. Почки возникают в нижней части туловищного отдела тела гидры над стебельком, последующие почки находятся несколько выше предыдущих, иногда они сидят на противоположных сторонах тела гидры, иногда располагаются по спирали (порядок возникновения и расположения почек зависит от вида гидры). Одновременно на теле гидры развивается 1—3, редко большее количество почек, однако наблюдали гидр с 8 и более почками.
         На первых стадиях почка возникает как едва заметный конический бугорок, затем она вытягивается, принимая более или менее цилиндрическую форму. На наружном конце почки появляются зачатки щупалец, вначале они имеют вид коротких тупых выростов, но постепенно вытягиваются, и на них развиваются стрекательные клетки. Наконец, нижняя часть тела почки утончается в ножку, а между щупальцами прорывается ротовое отверстие. Молодая гидра некоторое время еще остается соединенной с материнским организмом, иногда на ней даже закладываются почки следующего поколения. Отделение выпочковывающихся гидр происходит в той же последовательности, в какой возникают почки. Молодая гидра размером несколько меньше материнской и имеет неполное число щупалец. Недостающие щупальца появляются позднее.
         После обильного почкования материнская гидра истощается и в течение некоторого времени почек на ней не возникает.
         Некоторые исследователи наблюдали также деление гидр, но этот способ размножения, по-видимому, должен быть отнесен к разряду ненормальных (патологических) процессов. Деление у гидры возникает после повреждения ее тела и может быть объяснено высокой регенеративной способностью этого животного.
        
         При обильном питании весь теплый период года гидры размножаются почкованием, к половому размножению они приступают с наступлением осени. Большинство видов гидр раздельнополы, но есть и гермафродиты, т. е. такие, у которых на одной особи развиваются и мужские и женские половые клетки.
         Гонады образуются в эктодерме и имеют вид небольших бугорков, конусов или округлых тел. Порядок появления и характер расположения гонад такие же, как и почек. В каждой женской гонаде образуется по одному яйцу.
         В развивающихся гонадах скапливается большое количество промежуточных, недифференцированных клеток, из которых образуются как будущие половые клетки, так и «питательные» клетки, за счет которых увеличивается будущее яйцо. На первых стадиях развития яйца промежуточные клетки приобретают характер подвижных амебоидов. Вскоре одна из них начинает поглощать другие и значительно увеличивается в размерах, достигая 1,5 мм в поперечнике. После этого крупный амебоид подбирает свои псевдоподии и его очертания округляются. Вслед за тем происходят два деления созревания, при которых клетка делится на две неравные части, причем на наружной стороне яйца остаются два маленьких так называемых редукционных тельца — клеточки, отделившиеся от яйца в результате деления. При первом делении созревания число хромосом яйца сокращается вдвое. Созревшее яйцо выходит наружу из гонады через разрыв в ее стенке, но остается соединенным с телом гидры при помощи тонкой протоплазматической ножки.
         К этому времени в семенниках других гидр развиваются спермии, которые покидают гонаду и плавают в воде, один из них проникает в яйцо, после чего сразу же начинается дробление.
         В то время когда клетки развивающегося зародыша делятся, снаружи он одевается двумя оболочками, внешняя из которых имеет довольно толстые хитиноидные стенки и часто бывает покрыта шипиками. В таком состоянии зародыш под защитой двойной оболочки — эмбриотеки — перезимовывает. (Взрослые гидры с наступлением холодов погибают.) К весне внутри эмбриотеки уже имеется почти сформированная маленькая гидра, которая покидает свою зимнюю оболочку через разрыв ее стенки.
         В настоящее время известно около десятка видов гидр, населяющих пресные воды материков и многих островов. Различные виды гидр отличаются друг от друга очень незначительно. Один из видов характеризуется яркой зеленой окраской, которая обусловлена наличием в теле этих животных симбиотических водорослей — зоохлорелл. Среди наших гидр наиболее известны стебельчатая, или бурая, гидра (Hydra oligactis) и бесстебельчатая, или обыкновенная, гидра (Hydra vulgaris).
         Естественных врагов у гидры мало, так как она хорошо защищена стрекательными клетками. Все же гидр поедают некоторые ресничные черви и брюхоногие моллюски — прудовики. Имеются и специфичные паразиты гидр. Из простейших упомянем гидрамебу (Hydramoeba hydroxena) — эктопаразитическую амебу, которая поселяется на теле гидры и питается клетками ее эктодермы. К наружным паразитам гидры надо отнести также и один вид инфузорий — триходин, или гидровую «вошь» (Trichodina pediculus). Наконец, на гидрах паразитируют маленькие ветвистоусые рачки анхистропусы (Anchistropus). Эти рачки прикрепляются к переднему концу гидры и ее щупальцам при помощи специальных крючков на первой паре ног. Зараженные этими рачками гидры вскоре погибают. Стрекательные клетки гидры, по-видимому, не действуют на ее паразитов. Более того, отмечено, что прикосновение паразита к стрекательной клетке не вызывает ее «выстреливания».
         Как же гидра ведет себя в окружающей ее среде, как она воспринимает раздражения и отвечает на них?
         Как и большинство других кишечнополостных, гидра отвечает на всякое неблагоприятное раздражение сокращением тела. Если сосуд, в котором сидят гидры, слегка тряхнуть, то одни из животных сократятся сразу же, на других такой толчок не подействует вовсе, часть гидр только слегка подожмет свои щупальца. Значит, степень реакции на раздражение у гидр очень индивидуальна. Гидра совершенно лишена способности «запоминать»: можно часами ее колоть тонкой булавкой, но после каждого сокращения она снова вытягивается в том же направлении. Если же уколы будут очень частыми, то гидра перестает на них реагировать.
         Хотя у гидр нет специальных органов для восприятия света, они совершенно определенно реагируют на свет. К световым лучам наиболее чувствителен передний конец гидры, тогда как ее стебелек световых лучей почти не воспринимает. Если затенить зеленую гидру целиком, то она через 15—30 секунд сократится, если же затенять обезглавленную гидру или притенить только стебелек целой гидры, то она сократится лишь через 6—12 минут. Гидры способны различать направление потока света и двигаются в сторону его источника. Скорость передвижения гидр по направлению к источнику света очень невелика. В одном из опытов 50 зеленых и такое же количество бурых гидр были помещены в сосуд на расстоянии 20 см от стеклянной стенки, через которую падал свет. Первыми двинулись к свету зеленые гидры; через 4 часа 8 из них достигли светлой стенки аквариума, через 5 часов здесь их было уже 21, а через 6 часов — 44. К этому сроку туда же пришло 7 первых бурых гидр. Вообще оказалось, что бурые гидры шли на свет хуже, только через 10 часов у светлой стенки собралось 39 бурых гидр. Остальные подопытные животные к этому времени все еще находились в пути.
         Способность гидр двигаться в сторону источника света или просто перемещаться в более светлые участки бассейна очень важна для этих животных. Гидры питаются преимущественно планктонными рачками — циклопами и дафниями, а эти рачки всегда держатся в светлых и хорошо прогретых солнцем местах. Таким образом, идя навстречу свету, гидры приближаются к своей добыче.
         Для исследователя, изучающего реакции низших организмов на свет, гидры открывают самое широкое поле деятельности. Можно ставить опыты по выявлению того, насколько животные чувствительны к слабым или, напротив, очень сильным источникам света. Оказалось, что на слишком слабый свет гидры вовсе не реагируют. Очень сильный свет заставляет гидру уходить в затененные места и может даже убить животное. Ставились опыты по выявлению того, насколько чувствительна гидра к изменению силы света, как она ведет себя между двумя источниками света, различает ли отдельные части спектра. В одном из опытов стенка аквариума была окрашена во все цвета спектра, при этом зеленые гидры собрались в области сине-фиолетовых, а бурые в области сине-зеленых лучей. Значит, гидры различают цвет, и разные их виды обладают разным «вкусом» к нему.
         Гидры (кроме зеленой) не нуждаются в свете для нормальной жизнедеятельности. Если их хорошо кормить, они прекрасно живут и в темноте. Зеленая гидра, в теле которой живут симбиотические водоросли зоохлореллы, даже при обилии пищи в темноте чувствует себя плохо и сильно сокращается.
         На гидрах можно производить опыты по воздействию на организм различного рода вредных излучений. Так, выяснилось, что бурые гидры погибают уже после минутного освещения их ультрафиолетовыми лучами. Зеленая гидра оказалась к этим лучам более стойкой — она погибает только на 5—6-й минуте облучения.
         Очень интересны опыты по воздействию на гидр лучей Рентгена. Небольшие дозировки рентгеновских лучей вызывают у гидр усиление почкования. Облученные гидры по сравнению с необлученными дают примерно в 2,5 раза больше потомков за один и тот же срок. Увеличение дозы облучения вызывает подавление размножения; если же гидры получают слишком большую дозу лучей Рентгена, то они вскоре после этого погибают. Важно отметить, что слабые дозы облучения повышают у гидр регенеративные способности.
         При воздействии на гидр радиоактивного излучения был получен совершенно необычный результат. Общеизвестно, что животные никак не ощущают радиоактивных лучей и потому, попав в их зону, могут получить смертельную дозу и погибнуть. Зеленая гидра, реагируя на излучения радия, стремится уйти от его источника.
         Из приведенных выше примеров видно, что такие опыты с гидрами, как изучение влияния на них различных факторов внешней среды, не пустая забава, не наука ради науки, а серьезное и очень важное дело, результаты которого могут дать весьма существенные практические выводы. Конечно, проводилось изучение влияния на гидру температуры, концентрации углекислого газа, кислорода, а также целого ряда ядов, лекарственных препаратов и т. д.
         Гидра оказалась очень удобным объектом для проведения целого ряда экспериментальных исследований по изучению явления регенерации у животных.
         Как уже неоднократно упоминалось, гидра легко восстанавливает утраченные части тела. Животное, разрезанное пополам, вскоре восстанавливает недостающие части. Но становится непонятно: почему на переднем конце отрезка всегда вырастает «голова» со щупальцами, а на заднем стебелек? Какие законы управляют процессами восстановления? Вполне вероятно предположение, что некоторые из этих законов могут быть общими и для гидры, и для более высокоорганизованных животных. Узнав их, можно сделать важные выводы, приложимые даже к медицине.
         Делать операции на гидрах очень просто, для этого не нужно ни анестезирующих средств, ни сложных хирургических инструментов. Все оборудование «операционной» состоит из иглы, вделанной ушком в деревянную ручку, острого глазного скальпеля, маленьких ножниц и тонких стеклянных трубочек. Первые опыты по выяснению регенеративных способностей гидры были проведены более 200 лет назад Трамбле. Этот кропотливый исследователь наблюдал, как из продольных и поперечных половинок гидр возникают целые животные. Затем он стал делать продольные надрезы и увидел, что из лоскутков в нижней части полипа образуются стебельки, а из лоскутков в его верхней части — «головы». Многократно оперируя одного из подопытных полипов, Трамбле получил семиглавого полипа. Отрезав ему все семь «голов», Трамбле стал ждать результатов и вскоре увидел, что на месте каждой отрезанной «головы» появилась новая. Семиглавый полип, у которого вновь вырастают отрубленные «головы», был как две капли воды похож на мифическое существо — лернейскую гидру, сраженную великим героем древней Греции Гераклом. С тех пор за пресноводным полипом и сохранилось название — гидра.
         Попутно Трамбле установил, что гидра восстанавливается не только из половинок, но и из совсем маленьких кусочков тела. Теперь установлено, что даже из 1/200 части тела гидры может развиться целый иолип. Однако позднее выяснилось, что регенеративная способность таких маленьких кусочков из разных частей тела гидры неодинакова. Участок подошвы или стебелька восстанавливается в целую гидру значительно медленнее, чем участок из средней части тела. Однако этот факт долго оставался необъясненным.
         Внутренние силы, регулирующие и направляющие процессы нормальной регенерации, были вскрыты много позднее знаменитым американским физиологом Чайлдом (С. М. Child). Чайлд установил, что у целого ряда низших животных в теле имеется ярко выраженная физиологическая полярность. Так, под действием ядовитых веществ клетки на теле животного погибают и разрушаются во вполне определенной последовательности, а именно от переднего конца к заднему (у гидры от «головы» к «подошве»). Стало быть, клетки, находящиеся в различных частях тела, физиологически неравнозначны. Различие между ними заключается и во многих других проявлениях их физиологии, в том числе и в воздействии на развивающиеся молодые клетки на месте травмы.
         Постепенное изменение физиологической активности клеток от одного полюса к другому (вдоль оси тела) получило название осевого физиологического градиента.
         Теперь становится понятно, почему кусочки, вырезанные из подошвы гидры, очень медленно восстанавливают гипостом и щупальца — образующие их клетки физиологически очень далеки от клеток, образующих «голову». Осевой градиент играет очень большую роль при регенерации, но на этот процесс оказывают заметное влияние также и другие факторы. При регенерации очень большое значение имеет наличие на регенерирующей части развивающейся почки или искусственно подсаженного участка ткани из другого отдела тела животного, особенно из его передней части. Обладая высокой физиологической активностью, развивающаяся почка или клетки «головы» определенным образом воздействуют на рост регенерирующих клеток и подчиняют их развитие своему влиянию. Такие группы клеток или органы, которые вносят свои коррективы в действие осевого градиента, получили название организаторов. Выяснение этих особенностей регенерации помогло понять много неясных вопросов в развитии животного организма.
         В крупнейшем центре физиологии — в созданном академиком Павловым институте в Колтушах стоит памятник собаке. Большая часть законов, изложенных в учении Павлова, была открыта при постановке опытов на собаках. Возможно, такой же памятник заслуживает и маленький пресноводный полип.