(Cryptophyta) Тип Криптофиты, Криптофитовые водоросли, Криптомонады, Phylum Cryptophyta 1 класс
Информация из Интернета
Криптофитовые водоросли, или криптомонады, или криптофиты (Cryptophyta), — группа одноклеточных эукариотических фотосинтезирующих организмов, включающая около 165 видов, которой традиционно присваивают ранг типа. Почти все криптофитовые имеют монадную форму с дорсовентральным строением, несут два неравных жгутика. Покровы клетки представлены перипластом, имеются стрекательные структуры (эжектосомы). Хлоропласты окружены четырьмя мембранами и содержат редуцированное ядро — нуклеоморф. Основные фотосинтетические пигменты — хлорофиллы a, c2, а также каротиноиды и фикобилины. Митоз обычно открытый, без центриолей, размножение в основном — вегетативное (делением клеток пополам). Криптофитовые водоросли обитают как в морских, так и в пресных водах, могут вызывать цветение воды.
Начало научному изучению криптофитов положил немецкий естествоиспытатель Христиан Готфрид Эренберг, который в 1831 году в своей статье впервые ввёл имена родов Cryptomonas (от древнегреческих слов κρυπτος (kryptos) — «тайный», «скрытый», «замаскированный» и μονος (monos) — «одинокий») и Chilomonas, не сопроводив их какими-либо словесными описаниями или рисунками. Упомянул эти два рода он и в другой статье (написанной в том же году, но опубликованной в 1832 году), однако диагнозы обоих родов, обстоятельные описания и информативные рисунки появились только в основном труде Эренберга «Инфузории как совершенные организмы» (1838).
В начале и середине XX века значительный вклад в изучение криптофитов внесли альгологи Адольф Пашер, Генрих Скуя и Роджер Бутчер, а в 1980—1990-е серьёзные уточнения в систематике этой группы водорослей сделали Уве Санторе, Д. Хилл и Р. Уэзерби, Дж. Новарино и И. Лукас. В конце XX — начале XXI века особенное развитие получили исследования ультраструктуры криптофитов средствами электронной микроскопии, экология и молекулярная генетика криптофитов.
Большинство криптофитовых — одноклеточные подвижные организмы монадной формы с дорсовентральным строением и жгутиками. Своё название Cryptophyta группа получила за очень маленькие размеры (от 3 до 50 мкм), которые делают их малозаметными (от древнегреческих слов κρυπτος (kryptos) — «тайный», «скрытый», «замаскированный» и φυτον (phyton) — «растение»). У некоторых представителей в жизненном цикле имеется пальмеллоидная стадия (например, у Cryptomonas и Chroomonas). Лишь один вид — Bjornbergiella hawaiiensis — формирует простые нитчатые талломы. Среди криптофит известны неподвижные в вегетативном состоянии колониальные и одноклеточные коккоидные организмы (однако существование таких форм оспаривается).
Клетка типичной криптофитовой водоросли уплощённая, с выпуклой спинной и вогнутой брюшной сторонами. Форма клеток разнообразна: яйцевидная, эллипсоидная, грушевидная, бобовидная, веретеновидная. Передний конец клетки скошен, от него отходит продольная борозда, не доходящая до заднего конца. Наличие борозды и её длина используются в качестве признаков для определения родов.
У некоторых представителей на переднем конце тела имеется мешковидная глотка, или вестибулум, или крипта. У разных форм глотка имеет различную длину, она может проходить вдоль или поперёк тела. Иногда она разветвляется; у некоторых видов криптофит глотка укреплена цитоскелетными образованиями — электронно-плотными пластинами. Функциональное значение глотки до сих пор неясно; во всяком случае, у большинства фототрофных форм никогда не наблюдался захват ею каких-либо частиц.
Покровы клеток криптофит представлены перипластом, который состоит из плазмалеммы и двух дополнительных слоёв белкового материала, расположенных над и под плазмалеммой. Внутриклеточная часть перипласта может иметь форму сплошного чехла, как у Chilomonas, или состоять из отдельных пластинок: шестиугольных, как у Cryptomonas, или прямоугольных, как у Chroomonas. Прикрепление белковых пластинок к плазмалемме осуществляется за счёт округлых или многоугольных внутримембранных частиц. Наружная часть перипласта может состоять из пластинок, чешуек, слизи или их комбинации. В области глотки перипласта нет, однако закладка новых пластинок перипласта начинается в области рядом с глоткой. Перипласт обеспечивает постоянство формы клетки и предопределяет вид её поверхности: ровный или структурированный (так, у Chroomonas поверхность клетки состоит из прямоугольников, у Rhinomonas — из шестигранников). Клетка может секретировать наружу сульфатированные полисахариды, богатые фукозой.
На переднем конце клетки у монадных форм криптофит имеются два неравных жгутика, по длине сопоставимые с самой клеткой. Оба жгутика отходят от возвышения на краю глотки. Различия в длине между жгутиками невелики: отношения их длин колеблются от 3:5 до 9:10. Оба жгутика заканчиваются более узкой частью — акронемой, в которую заходят лишь две центральные трубочки аксонемы.
Когда клетка движется, то оба жгутика направлены вперёд или же один направлен вперёд, а второй — назад. На жгутиках имеются особые мастигонемы уникального строения, которые могут располагаться в два противолежащих ряда на длинном жгутике (длина мастигонем до 2 мкм), в один ряд на коротком жгутике или же на обоих жгутиках. Мастигонемы криптофит двухчастные и состоят из трубчатой части и тонкого терминального волоска. У некоторых представителей короткий жгутик не несёт мастигонем. У основания длинного жгутика может находиться дополнительный пучок, включающий около 45 волосков. Жгутики могут нести небольшие органические чешуйки в виде семиугольных розеток диаметром 140—170 нм. Известны формы с единственным перистым жгутиком.
Ультраструктура жгутика также имеет свои особенности. В переходной зоне жгутиков имеются две или более пластинчатые структуры (септы) ниже точки, где заканчиваются две центральные микротрубочки. Строение корешкового аппарата варьирует у представителей различных родов, но в общем случае корешковая система представлена ризостилем, который идёт в глубь клетки и состоит из 6—10 микротрубочек, соединённых сократительными фибриллами, трёх микротрубочковых корешков и фибриллярного корешка, прилегающего к одному из микротрубочковых.
Асимметричное расположение жгутиков вызывает несбалансированное вращение клетки вдоль продольной оси при плавании. Чем крупнее клетка и чем более изогнутую форму она имеет, тем более заметным становится такое «раскачивание».
В клетке криптофитовой водоросли имеется один или два хлоропласта (реже больше), окрашенных в разнообразные цвета: от сине-зелёного и оливково-зелёного до жёлто-бурого, коричневого и тёмно-красного. Хлоропласты могут быть глубоко разделены на две доли или иметь Н-образную форму. Имеются бесцветные формы с деградировавшими пластидами, они ведут гетеротрофный образ жизни.
Хлоропласты криптофит содержат следующие пигменты: хлорофилл а, хлорофилл c2 и фикобилины: фикоцианин и фикоэритрин (вместе эти пигменты никогда не встречаются, хлоропласт может содержать лишь один из них). За передачу энергии света от фикобилинов к хлорофиллу а отвечает хлорофилл c2, а аллофикоцианин, выполняющий эту функцию в клетках красных и синезелёных водорослей, отсутствует. Фикобилины криптофит расположены не в фикобилисомах, а во внутритилакоидных пространствах хлоропластов, поэтому тилакоиды криптофит толще, чем у других водорослей. Выявлено несколько типов фикоцианина и фикоэритрина, отличающихся различным положением максимумов поглощения света; так, в клетках Cryptomonas содержится фикоэритрин 566, Hemiselmis — фикоэритрин 555, Pyrenomonas — фикоэритрин 545; у Komma клетки содержат фикоцианин 645, у Chroomonas — фикоцианин 630 (цифры задают длину в нанометрах волны, на которой поглощение максимально).
У криптофит имеется несколько уникальных ксантофиллов, в частности, аллоксантин, который можно использовать для выявления их наличия в смеси планктонных водорослей, однако главным ксантофиллом является диатоксантин. Имеются также α- и β-каротин, крококсантин, зеаксантин и монадоксантин. Соотношение пигментов видоспецифично. Кроме того, оно зависит от интенсивности освещения: чем меньше интенсивность освещения, тем больше фикоэритрина содержится в хлоропластах и тем толще тилакоиды.
Криптофиты характеризуются уникальным типом расположения тилакоидов в хлоропласте. Они собраны в пары или в тройки, причём соседние тилакоиды не имеют соединений. Опоясывающей ламеллы нет. ДНК хлоропласта представлена небольшими нуклеоидами, которые рассеяны в строме хлоропласта.
В хлоропласте может присутствовать пиреноид, в который могут заходить ламеллы из 1—2 тилакоидов. У видов с двудольными хлоропластами пиреноид располагается в месте соединения двух долей. Таким образом, в отличие от хлоропластов красных и зелёных водорослей, хлоропласты криптофит не лежат свободно в цитоплазме, а связаны с другими органеллами (пиреноидом, вакуолями).
Хлоропласт криптофитовой водоросли окружён 4 мембранами, наружная несёт на своей поверхности рибосомы и продолжается в ядерную мембрану и эндоплазматический ретикулум (ЭПР). Происхождение хлоропластов криптофит рассматривают как пример вторичного эндосимбиоза, когда бесцветный фаготрофный жгутиконосец, сходный с современной криптофитовой водорослью Goniomonas, «съел» красную водоросль. Поэтому две внутренние мембраны хлоропласта криптофит интерпретируют как мембраны хлоропласта красной водоросли, третью мембрану — как плазмалемму клетки красной водоросли, а четвёртую мембрану — как мембрану пищеварительной вакуоли клетки-хозяина. Между двумя парами мембран расположено перипластидное пространство, в котором располагаются 80S рибосомы, содержащие, однако, рРНК эукариотического типа, зёрна крахмала, а также нуклеоморф — сильно редуцированное ядро красной водоросли. Происхождение хлоропластов криптофит от красных водорослей подтверждается анализом 16S рРНК нуклеоморфа и ядер красных водорослей. Две наружные мембраны иногда называют пластидным эндоплазматическим ретикулумом.
Процесс доставки в хлоропласты белков, кодируемых ядерной ДНК, у криптофит организован гораздо более сложно, чем у растений, чьи пластиды представляют собой результат первичного, а не вторичного эндосимбиоза. У криптофит и других организмов, чьи хлоропласты появились в результате вторичного эндосимбиоза, белки, кодируемые ядром, но предназначенные для пластид, содержат на N-конце лидерную последовательность, состоящую из сигнального пептида и переходного пептида. Два этих сигнала совместно обеспечивают прохождение белком всех четырёх мембран для доставки к месту своего функционирования. Было высказано предположение, что в переносе белков в перипластидное пространство принимает участие кодируемая нуклеоморфом ЭПР-связанная система деградации. Поскольку эндосимбионт утратил свой ЭПР, то эта система могла приобрести новую функцию в транспорте белков.
Как уже отмечалось выше, нуклеоморф представляет собой рудиментарное ядро эукариотического фототрофного эндосимбионта, инкорпорированного предками криптофитов в ходе вторичного эндосимбиоза (кроме криптофит, нуклеоморф также имеется у водорослей группы Chlorarachniophyta; однако в последнем случае происходила инкорпорация не красной, а зелёной водоросли). У криптофит нуклеоморф обычно имеет округлую или грушевидную форму; он окружён двойной мембраной, содержащей поры, сходные с ядерными поровыми комплексами, и имеет ядрышко с типичными эукариотическими РНК. Нуклеоморф может быть ассоциирован с пиреноидом; иногда он располагается внутри самого пиреноида, иногда — в выросте хлоропласта.
Размер ДНК нуклеоморфа Rhodomonas salina составляет только 660 тыс. пар нуклеотидов в трёх хромосомах (240, 225 и 195 тыс. пар нуклеотидов). Таким образом, геном нуклеоморфа — мельчайший из описанных ядерных геномов эукариот. Интересно, что нуклеоморфы Chlorarachniophyta также имеют 3 хромосомы. У различных видов криптофит ДНК нуклеоморфа содержит от 450 до 850 тыс. пар нуклеотидов. Нуклеоморф имеет 531 ген, которые кодируют 30 белков, функционирующих в хлоропластах. Плотность генов в ДНК нуклеоморфов криптофит довольно высока. Гены нуклеоморфа в большинстве своём являются генами домашнего хозяйства, их продукты участвуют в таких процессах, как фолдинг и разрушение белков, транскрипция и трансляция. В 2001 году был секвенирован геном нуклеоморфа Guillardia theta, а в 2007 году — Hemiselmis andersenii.
Деление нуклеоморфа происходит в препрофазе деления главного ядра вслед за репликацией базального тела, но до деления хлоропласта. Деление амитотическое, и, хотя геном нуклеоморфа содержит гены α-, β- и γ-тубулина, микротрубочки не принимают участия в образовании веретена деления; вместо этого имеются фибриллярные структуры, появляющиеся только во время деления. Дочерние нуклеоморфы мигрируют в противоположные концы хлоропласта, поэтому каждый дочерний хлоропласт наследует один нуклеоморф. Единственная известная криптофитовая водоросль, не имеющая нуклеоморфа — Goniomonas, которая утратила пластиды. У другой бесцветной криптофитовой водоросли, Chilomonas, имеются лейкопласт и нуклеоморф.
У ряда видов криптофит имеется глазок (стигма). У криптофит он связан с хлоропластом, но не связан со жгутиковым аппаратом, а потому может располагаться и в центре клетки, как, например, у Chroomonas mesostigmatica. Стигма состоит из большого количества пигментных липидных глобул, расположенных параллельными рядами под оболочкой хлоропласта. Для некоторых криптофит показан положительный фототаксис. В частности, бесцветный Chilomonas наиболее чувствителен к синему свету при длине волны 366 нм.
Ядра криптофит, как правило, невелики и не превышают в диаметре 3 мкм. Клетка имеет единственное ядро, расположенное в задней части клетки. Для ядер криптофит характерен сложный хромоцентрический тип организации. Хроматиновый ободок (скопление хроматина по краю ядра) может быть сплошным, почти сплошным или же узким и едва различимым, сильно разорванным. Остальное пространство ядра заполнено многочисленными глыбками хроматина, только у Rhinomonas panca они единичны. У различных криптофит имеется от 40 до 210 хромосом. В 2012 году было завершено секвенирование ядерного генома криптофитовой водоросли Guillardia theta, её ядерный геном оказался гаплоидным.
Митоз у исследованных криптофит отличается поразительным сходством и относится к открытому центрическому типу. Процесс деления клеток начинается с удвоения базальных тел. Ядра перемещаются в переднюю часть клетки и иногда вплотную подходят к базальным телам. Базальные тела не меняют своего положения в течение всего митоза и во время метафазы располагаются по обе стороны метафазной пластинки. Они не становятся центриолями, но выполняют их функции, в частности, около них формируются многочисленные микротрубочки, участвующие в образовании веретена.
В профазе митоза ядерная оболочка фрагментируется и постепенно растворяется, лишь малая часть её фрагментов сохраняется до конца митоза. В случае открытого митоза у криптофит происходит формирование дополнительной перинуклеарной оболочки из хлоропластного ретикулума. При митозе ядрышко не исчезает.
Веретено деления криптофит также необычно. Оно состоит из параллельных неконвергирующих микротрубочек. Область полюсов веретена уплощена и ограничена цистернами ЭПР. На его концах, кроме ризостилей, которые отходят от каждой пары базальных тел и не контактируют с микротрубочками веретена, располагаются нуклеоморфы, специально переместившиеся сюда. В метафазе вместо типичной экваториальной пластинки из морфологически дифференцированных хромосом образуется очень компактное скопление хроматина, в котором отдельные хромосомы не различимы, однако образуются особые проходы для микротрубочек веретена. Одно время считали, что истинных хромосом у криптофит нет, а компактную массу хроматина можно рассматривать как одну сборную хромосому. Однако сейчас считают, что хромосомы криптофит очень мелкие, а их кинетохоры морфологически очень слабо дифференцированы. Роль кинетохоров, по-видимому, выполняют выступы хроматина в области коридоров, которые контактируют с микротрубочками веретена. При делении клеток также происходит формирование новой глотки, которая достаётся одной из дочерних клеток.
Клетки криптофит нередко несут особые стрекательные структуры — эжектосомы, или трихоцисты. Их строение отличается от стрекающих структур динофлагеллят, однако они, возможно, родственны R-тельцам каппа-частиц инфузорий. Крупные эжектосомы располагаются под плазмалеммой в области глотки, а более мелкие разбросаны по всей поверхности клетки. Каждая эжектосома окружена одной мембраной и содержит внутри 2 ленты, скрученные в цилиндры. Более крупный цилиндр состоит из намотанного на спирали лентовидного мембранного материала. В его верхней части находится V-образное углубление, в котором залегает второй цилиндр. По-видимому, эти два цилиндра связаны друг с другом при помощи волокон. При химическом и физическом раздражении скрученные ленты распрямляются и выстреливают, разрывая мембрану эжектосомы и перипласт. Сначала выбрасывается маленький цилиндр, он вытягивает за собой ленту большого цилиндра. Выстрелившая эжектосома с периферии клетки имеет длину 4 мкм, а крупная эжектосома, расположенная около глотки, после срабатывания имеет длину 20 мкм. Выстреливание эжектосом заставляет клетку двигаться в противоположном направлении. Кроме того, при выстреливании из эжектосом высвобождаются вещества, убивающие бактерий, которыми питаются криптофиты. Эжектосомы формируются в пузырьках аппарата Гольджи, причём количество оборотов в цилиндре увеличивается по мере созревания эжектосомы.
С наличием эжектосом связаны трудности по переводу криптофит на лабораторные среды. Их клетки чрезвычайно чувствительны к изменению окружающих условий (рН, осмотические условия, температура) и так сильно отстреливают содержимое эжектосом, что клетки быстро разрушаются.
В цитоплазме клеток криптофит имеется одна сетчатая митохондрия с пластинчатыми кристами. Она образует две сети: периферическую (лежащую под плазмалеммой) и центральную (в центре клетки).
На переднем конце тела у пресноводных криптофит располагаются сократительные вакуоли, изливающие своё содержимое в глотку или борозду. Они служат для регуляции осмотического давления внутри клетки.
В клетках криптофит имеются два тельца Мопа. Тельце Мопа представляет собой крупную везикулярную структуру, расположенную в передней части клетки. Точные функции телец Мопа неизвестны, но, так как они содержат много мембран и фибрилл, они могут принимать участие в разрушении клеточных органелл, особенно отработанных эжектосом, и других инородных частиц в цитоплазме.
Среди криптофит имеются автотрофы, гетеротрофы (сапротрофы и фаготрофы) и миксотрофы. Большинство криптофит нуждаются в витамине B12 и тиамине, а некоторые — в биотине. В качестве источников азота криптофиты могут использовать аммоний и органические азотсодержащие соединения, однако морские формы менее способны к превращениям нитрата в нитрит по сравнению с пресноводными представителями. Органические вещества стимулируют рост криптофит. Различные бесцветные формы, а также окрашенный Cryptomonas ovata способны к фагоцитозу, а сине-зелёный Chroomonas pochmannii является миксотрофом. Для захвата и удержания бактериальных клеток используются особые вакуоли. Бактерии втягиваются в них через маленькую пору в глотке, где нет пластинок перипласта, и в вакуолях же перевариваются. Некоторые криптофиты (например, Goniomonas truncata) могут поедать вирусные частицы. При фаготрофном питании криптофиты демонстрируют хемотаксис в направлении наибольшей концентрации питательных веществ.
Основное запасное вещество у криптофит — крахмал, он откладывается между второй и третьей мембранами хлоропласта; из всех водорослей только криптофиты откладывают крахмал в этом месте. Как и у красных водорослей, он содержит больше амилопектина, чем амилозы, поэтому с йодом даёт красное окрашивание. В цитоплазме могут иметься липидные капли.
Криптофиты размножаются, главным образом, вегетативно — путём деления клетки надвое с помощью борозды деления, причём впячивание плазмалеммы начинается с заднего конца клетки. В большинстве случаев делящаяся клетка сохраняет подвижность. Наибольшая скорость роста для многих криптофит — одно деление в день при температуре около 20 °С.
Половой процесс описан у немногих видов, может протекать в форме изогамии. У Chroomonas acuta описана хологамия, то есть вегетативные клетки функционируют как гаметы. Слияние клеток происходит на брюшной стороне, причём задний конец одной клетки прикрепляется к середине другой. После слияния клеток формируется четырёхжгутиковая зигота, которая делится, вероятно, мейозом. У Proteomonas sulcata описан гетероморфный гаплодиплонтный жизненный цикл, в котором имеются как гаплоидная, так и диплоидная стадии. Обе стадии различаются по размеру, структуре перипласта и строению жгутикового аппарата (остальные криптофиты — гаплоидные организмы). Однако у этого вида до сих пор не открыты оплодотворение и мейоз. При неблагоприятных условиях (дефицит азота, избыточное освещение) внутри клеток формируются толстостенные цисты.
Криптофиты — планктонные организмы, иногда они встречаются в иле солёных озёр и детрите в пресных водоёмах. Большая часть из них может жить в широком температурном диапазоне, однако некоторые виды Rhodomonas могут жить только при строго определённых температурах. Виды рода Cryptomonas криофильны, они способны жить и размножаться на поверхности льда и снега. Chroomonas africana не утрачивает жизнеспособности при перенесении из морской воды в пресную. Криптофиты устойчивы к загрязнению, они встречаются даже в сточных водах и навозной жиже.
По сравнению с другими водорослями, криптофиты чрезвычайно чувствительны к избыточному освещению, поэтому они часто формируют глубоководные популяции в чистых олиготрофных озёрах. В высокогорных водоёмах и северных озёрах криптофиты встречаются в воде в течение всей зимы. Поскольку лёд и снег пропускают очень мало света, они собираются в поверхностных слоях воды, чтобы получить достаточное для фотосинтеза количество света. Выживание в условиях такой низкой освещённости обеспечивается не только высокой эффективностью фотосинтетической системы, но также низкой скоростью клеточного дыхания при низких температурах и снижением поедания криптофит зоопланктоном в условиях зимы. Весной, когда снег тает и освещённость арктических и горных водоёмов повышается, криптофиты страдают от повышенной освещённости, и большая часть их биомассы уходит в более глубокие слои воды.
Криптофиты нередко совершают суточные миграции в вертикальном направлении с амплитудой менее 5 м. Cryptomonas, обитающие в небольших лесных озёрах, утром демонстрируют положительный фототаксис и перемещаются в верхний слой воды, бедный фосфором. Далее криптофиты уходят из самых верхних слоёв, избегая избыточного освещения, и перемещаются в богатый фосфором нижний слой холодной воды (гиполимнион). Этот цикл миграций также помогает криптофитам избежать поедания зоопланктоном.
Криптофиты — доминирующая группа водорослей в покрытых льдами пресноводных водоёмах Антарктики, где они могут составлять до 70 % биомассы фитопланктона. В таких водоёмах наблюдается значительное расслоение воды, поскольку факторы, способные вызывать движение воды (ветер, изменение температуры воды), отсутствуют. Криптофиты доминируют в самых нижних слоях, где в течение зимы они ведут гетеротрофный образ жизни и поглощают одну бактерию в час путём фагоцитоза. Летом криптофиты миксотрофны. Залогом выживания криптофитов в таких условиях является то, что они всё время находятся в вегетативном состоянии, а не уходят в покоящиеся формы. Находясь в вегетативной форме, популяция может быстро отреагировать на улучшение условий и приход короткого антарктического лета. Летом, когда начинается приток воды от таяния ледников, криптофиты вызывают локализованные цветения в антарктических водах. Цветение воды, вызванное криптофитовыми водорослями, было зафиксировано и в Белом море.
Очень редко криптофиты живут в океанических водах при температуре 22 °С и выше, они отсутствуют в горячих источниках и гиперсолёных водоёмах. Пресноводные криптофиты населяют искусственные и естественные водоёмы со стоячей водой, где также избегают сильно освещённых слоёв воды. Бесцветные формы распространены в водах, загрязнённых органикой, и могут служить показателями загрязнения воды органическими веществами.
Среди криптофит имеются виды, населяющие болота с низкими значениями рН, однако ряд видов не обладает избирательностью по отношению к рН: так, Chilomonas живёт при рН 4,1—8,4. Некоторые криптомонады обитают в пищеварительном тракте домашних животных.
Криптофиты живут в качестве эндосимбионтов в клетках инфузории Myrionecta rubra. Эта инфузория может вызывать нетоксичное красное цветение воды в зоне апвеллинга. Цвет обусловлен красновато-коричневыми хлоропластами эндосимбионта. Криптофитовая водоросль, находящаяся внутри инфузории, окружена двойной мембраной (плазмалемма водоросли и пищеварительная вакуоль клетки-хозяина) и функционирует как полноценный автотроф. Ей присущи все особенности строения криптофитовых водорослей, но она лишена перипласта, жгутикового аппарата и эжектосом. Инфузория, содержащая эндосимбионтов-криптофит, целиком полагается на них в своём питании и утрачивает клеточный рот.
Некоторые криптофиты являются эндосимбионтами некоторых динофлагеллят (например, Dinophysis), причём в некоторых случаях у них может сохраняться ядро криптофитовой водоросли, а в других случаях сохраняются только пластиды.
Криптофиты имеют большое значение в круговороте кислорода, углерода, азота и фосфора в водоёмах, в синтезе органики из минеральных веществ. Криптофиты служат пищей для различных представителей зоопланктона, которым, в свою очередь, питаются рыбы. Ветвистоусые рачки интенсивно питаются криптофитами в эвтрофных прудах в зимнее время. Однако цветение воды в прудах, обусловленное Cyanomonas, приводило к массовой гибели сомов.
В настоящее время криптофиты находят применение в исследовательской сфере. Так, недавно открытые родопсины водоросли Guillardia theta, представляющие собой анионные каналы, могут использоваться в качестве очень эффективного оптогенетического метода для подавления нейронов.
На протяжении почти всего XX века классификация криптофитов разрабатывалась протозоологами и ботаниками-альгологами практически независимо. Протозоологи трактовали таксон как отряд Cryptomonadida Calkins, 1926 в составе типа Protozoa; альгологи — либо как класс Cryptophyceae Pascher, 1914 в составе отдела Pyrrophyta (включавшего также класс Dinophyceae, а иногда — ещё и класс Chloromonadophyceae), либо как самостоятельный отдел Cryptophyta Silva, 1962. При этом внутреннюю классификацию криптофитовых водорослей ботаники строили на основе типа организации таллома, выделяя порядки Cryptomonadales (монадные формы) и Cryptococcales (коккоидные формы). В конце XX века эти ранние классификации полностью устарели.
Исследования в области филогении криптофитов и родственных им групп эукариот, развернувшиеся в конце XX — начале XXI века, нашли отражение в системе типа Cryptysta (тип Cryptophyta в широком понимании), которая была предложена в 2015 году Майклом Руджеро с соавторами и входит как составная часть в представленную ими макросистему живущих организмов. Здесь данный тип рассматривается в составе подцарства Hacrobia (включающего также гаптофитов, центрохелидных солнечников и несколько мелких групп с неясными родственными связями: отряды Heliomonadida, Microhelida, Picomonadida и Telonemida). Система доведена до уровня порядков и отрядов (по отношению к классу Cryptophyceae авторы системы следуют правилам ботанической номенклатуры, по отношению к другим классам криптистов — правилам зоологической номенклатуры) и выглядит следующим образом:
Тип Cryptista Cavalier-Smith, 1989 — криптисты
Подтип Palpitia Cavalier-Smith, 2012
• Класс Palpitea Cavalier-Smith, 2012: отряд Palpitida
Подтип Rollomonadia Cavalier-Smith, 2012
• Класс Leucocryptea Cavalier-Smith, 2004: отряд Kathablepharida
• Класс Goniomonadea Cavalier-Smith, 2004: отряд Goniomonadida
• Класс Cryptophyceae Pascher, 1914 — криптофициевые: порядки Cryptomonadales, Pyrenomonadales, Tetragonidiales
Внутри криптофит эволюционно наиболее древними считаются формы, близкие к роду Goniomonas. Представители этого рода лишены пластид и нуклеоморфа, и наличие у них продольной борозды в отсутствие глотки считается наиболее примитивной особенностью. Формирование глотки происходило за счёт смыкания краёв борозды, начиная с заднего конца; этот процесс завершился у Chroomonas, имеющего глотку, но лишённого борозды. В случае Chilomonas произошёл вторичный переход к гетеротрофности: у этого организма редуцирована борозда, развита глотка и имеются лейкопласты. Такая схема эволюционных взаимоотношений подтверждается анализом 18S рРНК.
Статус таксономической группы Hacrobia (а следовательно, и внешние связи криптофитов) до сих пор окончательно неясен. В одних исследованиях группа предстаёт как клада, сестринская по отношению к группе SAR (страменопилы, альвеоляты и ризарии). Но есть и работы, в которых единство группы Hacrobia отвергается; в одной из них центрохелидные солнечники, гаптофиты и телонемиды предстают как последовательные ответвления у основания группы SAR, а криптисты не связаны с ними и оказываются наиболее ранним ответвлением группы Archaeplastida.